Remote Monitoring of Two-State Markov Sources via Random Access Channels: An Information Freshness vs. State Estimation Entropy Perspective
We study a system in which two-state Markov sources send status updates to a common receiver over a slotted ALOHA random access channel. We characterize the performance of the system in terms of state estimation entropy (SEE), which measures the uncertainty at the receiver about the sources’ state. Two channel access strategies are considered: a reactive policy that depends on the source behaviour and a random one that is independent of it.