Paper award 39203
Energy Efficient Wireless Communications by Harnessing Huygens’ Metasurfaces
Ambitions for the next generation of wireless communication include high data rates, low latency, ubiquitous access, ensuring sustainability (in terms of consumption of energy and natural resources), all while maintaining a reasonable level of implementation complexity. Achieving these goals necessitates reforms in cellular networks, specifically in the physical layer and antenna design.
Puncturing Quantum Stabilizer Codes
Classical coding theory contains several techniques to obtain new codes from other codes, including puncturing and shortening. Both of these techniques have been generalized to quantum codes. Restricting to stabilizer codes, this paper introduces more freedom in the choice of the encoded states after puncturing. Furthermore, we also give an explicit description of the stabilizers for the punctured code.