Inventing Codes for Channels With Active Feedback via Deep Learning
Designing reliable codes for channels with feedback, which has significant theoretical and practical importance, is one of the long-standing open problems in coding theory. While there are numerous prior works on analytical codes for channels with feedback, the majority of them focus on channels with noiseless output feedback, where the optimal coding scheme is still unknown. For channels with noisy feedback, deriving analytical codes becomes even more challenging, and much less is known.